हिंदी

∫1+sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int sqrt(1 + sin2x)  "d"x`

योग

उत्तर

`int sqrt(1 + sin2x)  "d"x = int sqrt(sin^2x + cos^2x + 2sinx cosx)  "d"x`

= `int sqrt((cosx + sinx)^2)  "d"x`

= `int (cosx + sinx)  "d"x`

= sin x – cos x + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×