हिंदी

Evaluate the following : ∫18-3x+2x2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`

योग

उत्तर

Let I = `int (1)/sqrt(8 - 3x + 2x^2).dx`

 I = `int (1)/sqrt(2x^2 - 3x + 8).dx`

I = `1/sqrt2 int 1/sqrt(x^2 - 3/2x + 4)dx`

I = `1/sqrt2 int 1/sqrt((x^2 - 3/2x + 9/16) + 4 -9/16)dx`

I = `1/sqrt2 int 1/sqrt((x - 3/4)^2 + (sqrt(55)/4)^2`

I = `(1)/sqrt(2) log| x - (3)/(4) + sqrt((x - (3)/(4))^2 + (55/4)^2)|`

I =`(1)/sqrt(2) log| x - (3)/(4) + sqrt(x^2 - (3x)/(2) + 4)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.16 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int sqrt(1 + sin2x)  "d"x`


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int x/(x + 2)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate `int1/(x(x - 1))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×