Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
उत्तर
Let I = `int (1)/sqrt(8 - 3x + 2x^2).dx`
I = `int (1)/sqrt(2x^2 - 3x + 8).dx`
I = `1/sqrt2 int 1/sqrt(x^2 - 3/2x + 4)dx`
I = `1/sqrt2 int 1/sqrt((x^2 - 3/2x + 9/16) + 4 -9/16)dx`
I = `1/sqrt2 int 1/sqrt((x - 3/4)^2 + (sqrt(55)/4)^2`
I = `(1)/sqrt(2) log| x - (3)/(4) + sqrt((x - (3)/(4))^2 + (55/4)^2)|`
I =`(1)/sqrt(2) log| x - (3)/(4) + sqrt(x^2 - (3x)/(2) + 4)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int logx/x "d"x`
`int x/(x + 2) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`