हिंदी

Integrate the following functions w.r.t. x : 12+3tanx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`

योग

उत्तर

Let I = `int (1)/(2 + 3tanx).dx`

= `int(1)/(2 + 3(sinx/cosx)).dx`

= `int cosx/(2cosx + 3sinx).dx`
Put,

Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`

∴ cos x = `"A"(2cosx + 3 sinx ) + "B"[d/dx(2cos x + 3 sin x)]`

= A(2 cos x + 3 sin x) + B(– 2 sin x + 3 cos x)

∴ cos x = (2A + 3B)cos x + (3A – 2B)sin x
Equating the coefficients of cos x sin x on both the sides, we get
2A  3B = 1          ...(1)
and
3A – 2B = 0      ...(2)
Multiplying equation (1) by 22 and equation (2) by 3, we get
4A +6B = 2
9A – 6B = 0
On adding, we get
13A = 2
∴ A = `(2)/(13)`

∴ from (2), 2B = 3A = `3(2/13) = (6)/(13)`

∴ B = `(3)/(13)`

∴ cos x = `(2)/(13)(2cosx + 3sinx) + (3)/(13)(-2sinx +  3cosx)`

∴ I = `int[(2/13(2cosx + 3sinx) + 3/13(-2 sinx + 3cosx))/(2cosx + 3sinx)].dx`

= `int[2/13 + (3/13(-2sinx + 3cosx))/(2cosx + 3sinx)].dx`

= `(2)/(13) 1 dx + (3)/(13) int (-2sinx + 3cosx)/(2cosx + 3sinx).dx`

= `(2)/(13)x + (3)/(13)log|2cos x + 3sinx| + c.     ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 2.06 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


`int "dx"/(9"x"^2 + 1)= ______. `


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following : `int (logx)2.dx`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int cos sqrtx` dx = _____________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int(log(logx))/x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×