Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
उत्तर
Let I = `int (1)/(2 + 3tanx).dx`
= `int(1)/(2 + 3(sinx/cosx)).dx`
= `int cosx/(2cosx + 3sinx).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`
∴ cos x = `"A"(2cosx + 3 sinx ) + "B"[d/dx(2cos x + 3 sin x)]`
= A(2 cos x + 3 sin x) + B(– 2 sin x + 3 cos x)
∴ cos x = (2A + 3B)cos x + (3A – 2B)sin x
Equating the coefficients of cos x sin x on both the sides, we get
2A 3B = 1 ...(1)
and
3A – 2B = 0 ...(2)
Multiplying equation (1) by 22 and equation (2) by 3, we get
4A +6B = 2
9A – 6B = 0
On adding, we get
13A = 2
∴ A = `(2)/(13)`
∴ from (2), 2B = 3A = `3(2/13) = (6)/(13)`
∴ B = `(3)/(13)`
∴ cos x = `(2)/(13)(2cosx + 3sinx) + (3)/(13)(-2sinx + 3cosx)`
∴ I = `int[(2/13(2cosx + 3sinx) + 3/13(-2 sinx + 3cosx))/(2cosx + 3sinx)].dx`
= `int[2/13 + (3/13(-2sinx + 3cosx))/(2cosx + 3sinx)].dx`
= `(2)/(13) 1 dx + (3)/(13) int (-2sinx + 3cosx)/(2cosx + 3sinx).dx`
= `(2)/(13)x + (3)/(13)log|2cos x + 3sinx| + c. ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int cos sqrtx` dx = _____________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int(log(logx))/x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int "cosec"^4x dx` = ______.
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).