Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
विकल्प
`(1 - x)^(-1) + c`
`(1 + x)^(-1) + c`
`(1 - x)^(-1) - 1 + c`
`(1 - x)^(-1) + 1 + c`
उत्तर
`int(1 - x)^(-2)dx` = `bb(underline((1 - x)^(-1) + c))`.
Explanation:
`int(1 - x)^(-2)dx = ((1 - x)^(-2 + 1))/((-2 + 1)).d/dx(1 - x) + c`
= `(1 - x)^-1/((-1)).(0 - 1) + c`
= (1 – x)–1 + c
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int 1/((2"x" + 3))` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`