Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
उत्तर
x2dy = (2xy + y2)dx
`=>dy/dx=(2xy+y^2)/x^2.......(i)`
Let y=vx,
`dy/dx=v+xdv/dx`
Substituting in (i), we get
`v+x (dv)/dx=(2vx^2+v^2x^2)/x^2`
`=>v+x (dv)/dx=2v+v^2`
`=>x (dv)/dx=v^2+v`
`=>(dv)/(v^2+v)=dx/x`
integrating both sides
`=>int(dv)/(v^2+v)=intdx/x`
`=>(v+1-v)/(v(v+1))dv=intdx/x`
`=>logv-log|v+1|=logx+logC`
`=>log|v/(v+1)|=log|Cx|`
`=>log|(y/x)/(y/x+1)|=log|Cx|`
`=>y/(y+x)=Cx` [Removing logarithm in both sides]
`therefore y=Cxy+Cx^2` ,which is the general solution.
Putting y=1 and x=1,
`1=C + C`
`=>2C=1`
`=>c=1/2y`
`=(xy)/2+x^2/2`
`therefore 2y=xy+x^2,` which is the particular solution.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(e^(x^2))`
Write a value of
Write a value of
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int ("d"x)/(x(x^4 + 1))` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`