Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
उत्तर
Let I = `int (3e^(2x) + 5)/(4e^(2x) - 5).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`
∴ 3e2x + 5 = `"A"(4e^(2x) - 5) + "B"[d/dx(4e^(2x) - 5)]`
= A(4e2x – 5) + B(4.e2x x 2 – 0)
∴ 3e2x + 5 = (4A + 8B)e2x – 5A
Equating the coeffiecient of e2x and constant on both sides, we get
4A + 8B = 3 ...(1)
and
– 5A = 5
∴ A = – 1
∴ from (1), 4(– 1) + 8B = 3
∴ 8B = 7
∴ B = `(7)/(8)`
∴ 3e2x + 5 = `- (4e^(2x) - 5) + 7/8(8e^(2x))`
∴ I = `int[(-(4e^(2x) - 5) +7/8(8e^(2x)))/(4e^(2x) - 5)].dx`
= `int[-1 +(7/8(8e^(2x)))/(4e^(2x) - 5)].dx`
= `int 1 dx + (7)/(8) int (8e^(2x))/(4e^(2x) - 5).dx`
= `- x + (7)/(8)log|4e^(2x) - 5| + c ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Solve: dy/dx = cos(x + y)
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int 1/(cos x - sin x)` dx = _______________
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
Write `int cotx dx`.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`