हिंदी

∫1cosx-sinx dx = _______________ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int 1/(cos x - sin x)` dx = _______________

विकल्प

  • `1/sqrt2 log ["cosec" (x + π/4) - cot (x + π/4)] + "c"`

  • `sqrt2 log ["cosec" (x + π/4) + cot (x + π/4)] + "c"`

  • `1/sqrt2 log [sec (x + π/4) + tan (x + π/4)] + "c"`

  • `sqrt2 log [sec (x + π/4) - tan (x + π/4)] + "c"`

MCQ
रिक्त स्थान भरें

उत्तर

`1/sqrt2 log [sec (x + π/4) + tan (x + π/4)] + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - MCQ

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Solve: dy/dx = cos(x + y)


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int x \sin^3 x\ dx\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(1 + sin2x)  "d"x`


`int(log(logx))/x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int sin^-1 x`dx = ?


`int(5x + 2)/(3x - 4) dx` = ______


`int (cos x)/(1 - sin x) "dx" =` ______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int sec^6 x tan x   "d"x` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int 1/(sinx.cos^2x)dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int (1+x+x^2/(2!))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×