Advertisements
Advertisements
प्रश्न
`int (1 + x)/(x + "e"^(-x)) "d"x`
उत्तर
Let I = `int (1 + x)/(x + "e"^(-x)) "d"x`
= `int (1 + x)/(x + 1/"e"^x) "d"x`
= `int (1 + x)/((x*"e"^x + 1)/("e"^x)) "d"x`
= `int ("e"^x (1 + x))/(x*"e"^x + 1) "d"x`
Put x. ex + 1 = t
∴ [x. (ex) + ex. (1) + 0] dx = dt
∴ ex (x + 1) dx = dt
∴ I = `int "dt"/"t"`
= log |t| + c
∴ I = log |x. ex + 1| + c
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int 1/(x(x-1)) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int sqrt(x^2 - a^2)/x dx` = ______.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`