Advertisements
Advertisements
प्रश्न
`int 1/(4x^2 - 20x + 17) "d"x`
उत्तर
Let I = `int 1/(4x^2 - 20x + 17) "d"x`
= `1/4int 1/(x^2 - 5x + 17/4) "d"x`
= `1/4int 1/(x^2 - 2. 5/2*x + 25/4 - 25/4 + 17/4) "d"x`
= `1/4int 1/((x - 5/2)^2 - 8/4) "d"x`
= `1/4int 1/((x - 5/2)^2 - (sqrt(2))^2) "d"x`
= `1/4 xx 1/(2sqrt(2)) log |(x - 5/2 - sqrt(2))/(x - 5/2 + sqrt(2))| + "c"`
∴ I = `1/(8sqrt(2)) log |(2x - 5 - 2sqrt(2))/(2x - 5 + 2sqrt(2))| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`