Advertisements
Advertisements
प्रश्न
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
उत्तर
Let I = `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
We perform actual division and express the result as:
`"Dividend"/"Divisor" = "Quotient" + "Remainder"/"Divisor"`
x - 1
`2"x"^2 - "x" - 10)overline(2"x"^3 - 3"x"^2 - 9"x" + 1)`
`2"x"^3 - "x"^2 - 10"x"`
(-) (+) (+)
`- 2"x"^2 + "x" + 1`
`- 2"x"^2 + "x" + 10`
(+) (-) (-)
- 9
∴ I = `int("x - 1" + (-9)/(2"x"^2 - "x" - 10))` dx
`= int "x" * "dx" - int 1 * "dx" - 9 int 1/(2"x"^2 - "x" - 10) "dx"`
Here 2x2 - x - 10
`= 2("x"^2 + 1/2"x" + 1/16 - 5 - 1/16)`
`= 2 [("x" - 1/4)^2 - 81/16]`
∴ I = `int "x" * "dx" - int 1 * "dx" - 9/2 int 1/(("x" - 1/4)^2 - (9/4)^2)`dx
`= "x"^2/2 - "x" - 9/2 * 1/(2 (9/4)) log |("x" - 1/4 - 9/4)/("x" - 1/4 + 9/4)| + "c"_1`
`= "x"^2/2 - "x" - log |("x" -5/2)/("x + 2")| + "c"_1`
`= "x"^2/2 - "x" - log|("2x" - 5)/(2("x + 2"))| + "c"_1`
`= "x"^2/2 - "x" + log|(2("x + 2"))/("2x" - 5)| + "c"_1`
`= "x"^2/2 - "x" + log |("x + 2")/("2x - 5")| + log 2 + "c"_1`
∴ I = `"x"^2/2 - "x" + log|("x + 2")/("2x - 5")| + "c" "where" "c" = "c"_1 + log 2`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`