Advertisements
Advertisements
प्रश्न
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
उत्तर
Let I = `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int (1 + "t")/((3 + "t")(2 + "3t"))` dt
Let `(1 + "t")/((3 + "t")(2 + "3t")) = "A"/("3 + t") + "B"/(2 + "3t")`
∴ 1 + t = A(2 + 3t) + B(3 + t) ...(i)
Putting t = – 3 in (i), we get
1 -3 = A(2 - 9) + B(0)
∴ - 2 = A (- 7)
∴ A = `2/7`
Putting t = `- 2/3` in (i), we get
`1 - 2/3 = "A"(0) + "B"(3 - 2/3)`
∴ `1/3 = "B"(7/3)`
∴ B = `1/7`
∴ `("1+t")/(("3 + t")("2 + 3t")) = (2/7)/("3 + t") + (1/7)/(2 + "3t")`
∴ I = `int ((2/7)/("3 + t") + (1/7)/("2 + 3t"))` dt
`= 2/7 int 1/(3+"t") "dt" + 1/7 int 1/(2 + "3t")` dt
`= 2/7 log |3 + "t"| + 1/7 * (log |2 + "3t"|)/3` + c
∴ I = `2/7 log |3 + log "x"| + 1/21 log |2 + 3 log "x"| + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int sec^3x "d"x`
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Evaluate `int x log x "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.