हिंदी

Integrate the following w.r.t. x : 12sinx+sin2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`

योग

उत्तर

Let I =  `int (1)/(2sinx + sin2x)dx`

= `int (1)/(2sinx + 2sinx cosx)dx`

=  `int (1)/(2sinx(1 + cosx))dx`

= `int (sinx)/(2sin^2x(1 + cosx))dx`

= `int (sinx.dx)/(2(1 - cos^2x)(1 + cosx))dx`

= `int (sin*dx)/(2(1 - cosx)(1 + cosx)(1 + cosx)`

=  `int (sin*dx)/(2(1 - cosx)(1 + cosx)^2`

Put cos x = t
∴ – sinx .dx = dt
∴ sinx .dx = – dt

∴ I = `-(1)/(2) int (1)/((1 - t)(1 + t)^2)*dt`

= `(1)/(2) int (1)/((t - 1)(t + 1)^2)*dt`

Let `(1)/((t - 1)(t + 1)^2) = "A"/(t - 1) + "B"/(t + 1) + "C"/(t + 1)^2`

∴ 1 = A(t + 1)2 + B(t – 1)(t + 1) + C(t – 1)
Put t + 1 = 0, i.e., t = 1, we get
∴ 1 = A(0) + B(0) + C(– 2)

∴ C = `-(1)/(2)`
Put t – 1 = 0, i.e., t = 1, we get
∴ 1 = A(4) + B(0) + C(0)

∴ A = `(1)/(4)`
Comparing coefficients of t2 on both sides, we get
0 = A + B

∴ B = – A = `-(1)/(4)`

∴ `(1)/((t - 1)(t + 1)^2) = ((1/4))/(t - 1) + ((-1/4))/(t + 1) + ((-1/2))/(t + 1)^2`

∴ I = `(1)/(2) int [((1/4))/(t - 1) + ((-1/4))/(t + 1) + ((-1/2))/(t + 1)^2]*dt`

= `(1)/(8) int (1)/(t - 1)*dt - (1)/(8) int 1/(t + 1)*dt - (1)/(4) int (1)/(t - 1)^2*dt`

= `(1)/(8)log|t - 1| - (1)/(8)log|t + 1| - (1)/(4)((t + 1)^-1)/((-1)) + c`

= `(1)/(8)log|(t - 1)/(t + 1) + (1)/(4)*(1)/(t + 1) + c`

= `(1)/(8)log|(cosx - 1)/(cosx + 1)| + (1)/(4(cosx + 1)) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.4 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.4 | Q 1.19 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find : `int x^2/(x^4+x^2-2) dx`


Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (xdx)/((x - 1)(x - 2))` equals:


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


`int 1/(4x^2 - 20x + 17)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x sin2x cos5x  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int xcos^3x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×