हिंदी

∫x2+x-1x2+x-6 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`

योग

उत्तर

Let I = `int (x^2 + x -1)/(x^2 + x - 6)  "d"x`

= `int (x^2 + x - 6 + 5)/(x^2 + x - 6)  "d"x`

= `int [1 + (5/(x^2 + x - 6))]  "d"x`

Let `5/(x^2 + x - 6) = 5/((x + 3)(x -  2))`

= `"A"/(x + 3) + "B"/(x - 2)`

∴ 5 = A(x − 2) + B(x + 3)      ........(i)

Putting x = 2 in (i), we get

5 = B(5)

∴ B = 1

Putting x = −3 in (i), we get

5 = A(− 5)

∴ A = −1

∴ `5/((x + 3)(x - 2)) = (-1)/(x + 3) + 1/(x - 2)`

∴ I = `int[1 + (-1)/(x + 3) + 1/(x - 2)]  "d"x`

= `int "d"x - int 1/(x + 3)  "d"x + int 1/(x - 2)  "d"x`

= x − log|x + 3| + log|x − 2| + c

∴ I = `x + log |(x - 2)/(x + 3)| + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Short Answers II

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Find : `int x^2/(x^4+x^2-2) dx`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int x^7/(1 + x^4)^2  "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int sin(logx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int xcos^3x  "d"x`


`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int x log x  "d"x`


Evaluate `int x^2"e"^(4x)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×