Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
उत्तर
`(5x)/((x + 1)(x^2 - 4))`
`= 5/((x + 1)(x + 2)(x - 2))`
`(5x)/((x + 1)(x^2 - 4)) => A/(x + 1) + B/(x + 2) + C/(x - 2)`
⇒ 5x = A(x2 - 4) + B (x + 1)(x - 2) + C(x + 1)(x + 2)
Put x = -1
-5 = -3A + 0 = 0
⇒ A `= 5/3`
Put x = -2
-10 = 0 + B(-1)(-4) + 0
⇒ B `= (-5)/2`
Put x = 2
10 = 0 + 0 + 12C
⇒ C `= 5/6`
`therefore int (5x)/((x + 1)(x^2 - 4)`
`= 5/3 int 1/(x + 1) dx - 5/2 int 1/(x + 1) dx + 5/6 int 1/(x - 2) dx`
`= 5/3 log abs (x + 1) - 5/2 log abs (x + 1) + 5/6 log abs (x - 2) + C`
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int sec^3x "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`