हिंदी

Integrate the rational function: 5x(x+1)(x2-4) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`

योग

उत्तर

`(5x)/((x + 1)(x^2 - 4))`

`= 5/((x + 1)(x + 2)(x - 2))`

`(5x)/((x + 1)(x^2 - 4)) => A/(x + 1) + B/(x + 2) + C/(x - 2)`

⇒ 5x = A(x2 - 4) + B (x + 1)(x - 2) + C(x + 1)(x + 2)

Put x = -1

-5 = -3A + 0 = 0

⇒ A `= 5/3`

Put x = -2

-10 = 0 + B(-1)(-4) + 0

⇒ B `= (-5)/2`

Put x = 2

10 = 0 + 0 + 12C

⇒ C `= 5/6`

`therefore int (5x)/((x + 1)(x^2 - 4)`

`= 5/3 int 1/(x + 1)  dx - 5/2 int 1/(x + 1)  dx + 5/6 int 1/(x - 2)  dx`

`= 5/3  log abs (x + 1) - 5/2  log abs (x + 1) + 5/6  log abs (x - 2) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.5 | Q 11 | पृष्ठ ३२२

संबंधित प्रश्न

Find : `int x^2/(x^4+x^2-2) dx`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int (2x - 7)/sqrt(4x- 1) dx`


`int 1/(x(x^3 - 1)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^3x  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int 1/(sinx(3 + 2cosx))  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×