हिंदी

∫1sinx(3+2cosx) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int 1/(sinx(3 + 2cosx))  "d"x`

योग

उत्तर

Let I = `int 1/(sinx(3 + 2cosx))  "d"x`

= `int (sin x  "d"x)/(sin^2x(3 + 2cosx))`

= `int (sin x  "d"x)/((1 - cos^2x)(3 + 2cos x))`

= `int (sin x  "d"x)/((1 + cos x)(1 - cos x)(3 + 2cos x))`

Put cos x = t

∴ − sin x d x = dt 

∴ I = `int (-1)/((1 + "t")(1 - "t")(3 + 2"t"))  "dt"`

Let  `1/((1 + "t")(1 - "t")(3 + 2"t"))`

= `"A"/(1 + "t") + "B"/(1 - "t") + "C"/(3 + 2"t")`

∴ −1 = A(1 − t)(3 + 2t) + B(1 + t)(3 + 2t) + C(1 + t)(1 − t)  .......(i)

Putting t = 1 in (i), we get

−1 = 10B

∴ B = `(-1)/10`

Putting t = −1 in (i), we get

−1 = 2A

∴ A = `(-1)/2`

Putting t = `-3/2` in (i), we get

−1 = `-5/4 "C"

∴ C = `4/5`

∴ `(-1)/((1 + "t")(1 - "t")(3 + 2"t")) = ((-1)/2)/(1 + "t") + ((-1)/10)/(1 - "t") + ((-4)/5)/(3 + 2"t")`

∴ I = `int[(-1)/(2(1 + "t")) + ((-1))/(10(1 - "t")) + 4/(5(3 + 2"t"))]  "dt"`

= `-1/2 int 1/(1 + "t")  "dt" - 1/10 int 1/(1 - "t") * "dt" + 4/5 int 1/(3 + 2"t")  "dt"`

= `(-1)/2 log|1 + "t"| - 1/10 * (log|1 - "t"|)/(-1) + 4/5 * (log|3 + 2"t"|)/2 + "c"`

∴ I = `(-1)/2 log|1 + cos x| + 1/10 log|1 - cos x| + 2/5 log|3 + 2cos x| + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Long Answers III

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int sin(logx)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x^3tan^(-1)x  "d"x`


`int x sin2x cos5x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int ("d"x)/(x^3 - 1)`


`int xcos^3x  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int x log x  "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Verify the following using the concept of integration as an antiderivative

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int (dx)/(2 + cos x - sin x)`


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×