Advertisements
Advertisements
प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
उत्तर
Let `I=∫8/((x+2)(x^2+4))dx`
Let `8/((x+2)(x^2+4))=A/(x+2)+(Bx+C)/(x^2+4)`
`8=A(x^2+4)+(Bx+C)(x+2)`
`8=A(x^2+4)+Bx^2+2Bx+Cx+2C`
`8=(A+B)x^2+(2B+c)x+(4A+2C)`
Comparing the coefficients of x2 , x and the constant term, we get
A + B = 0, 2B + C = 0 and 4A + 2C = 8
On solving these equations, we get
A = 1, B = –1, C = 2
`8/((x+2)(x^2+4))=1/(x+2)+(-x+2)/(x^2+4)`
`I=int[1/(x+2)+(-x+2)/(x^2+4)]dx`
`=int1/(x+2)dx-1/2int(2x)/(x^2+4)dx+2int1/(x^2+2^2)dx`
`=log|x+2|-1/2log|x^2+4|+tan^-1(x/2)+c`
`=log|(x+2)/sqrt(x^2+4)|+tan^-1(x/2)+c`
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int ("d"x)/(x^3 - 1)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`