Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`2/((1-x)(1+x^2))`
उत्तर
`2/((1 - x)(1 + x^2)) = A/(1 - x) = (Bx + C)/(1 + x^2)`
2 = A(1 + x2) + (1 - x) Bx + C
Put x = 1
2 = 2A + 0
⇒ A = 1
Put x = 0
2 = A + C
⇒ C = 1
Comparing the coefficients of x2 on both sides,
0 = A - B
⇒ B = A = 1
`therefore 2/((1 - x)(1 + x^2)) = 1/(1 - x) + (x + 1)/(1 + x^2)`
`= 1/(1 - x) + x/(1 + x^2) + 1/(1 + x^2)`
On integrating
`int 2/((1 - x)(1 + x^2)) dx`
`= int 1/(1 - x) dx + 1/2 int (2x)/(1 + x^2) dx + 1/(1 + x^2) dx`
`= - log abs (1 - x) + 1/2 log abs (1 + x^2) + tan^-1 x + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
`int ("d"x)/(x^3 - 1)`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
`int x/((x - 1)^2 (x + 2)) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`