हिंदी

∫x(x-1)2(x+2)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int x/((x - 1)^2 (x + 2)) "d"x`

योग

उत्तर

Let I = `int x/((x - 1)^2 (x + 2)) "d"x`

Let `x/((x - 1)^2 (x + 2)) = "A"/(x - 1) + "B"/(x - 1)^2 + "C"/((x + 2))`

∴ x = A(x – 1)(x + 2) + B(x + 2) + C(x – 1)2    ......(i)

Putting x = 1 in (i), we get

1 = A(0)(3) + B(3) + C(0)2

∴ 1 = 3B

∴ B = `1/3`

Putting x =  2 in (i), we get

– 2 = A(– 3)(0) + B(0) + C(9)

∴ – 2 = 9C

∴ C = `-2/9`

Putting x = – 1 in (i), we get

– 1 = A(– 2)(1) + B(1) + C(4)

∴ – 1 = `-2"A" + 1/3 - 8/9` 

∴ – 1 = `-2"A" - 5/9`

∴ 2A = `-5/9 + 1 = 4/9`

∴ A = `2/9`

∴ `x/((x - 1)^2(x + 2)) = (2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)`

∴ I = `int[(2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)] "d"x`

= `2/9 int 1/(x - 1) "d"x + 1/3int(x - 1)^(-2) "d"x - 2/9 int 1/(x + 2) "d"x`

= `2/9 log|x - 1| + 1/3*((x - 1)^(-1))/(-1) - 2/9 log|x + 2| + "c"`

= `2/9 log|x - 1| - 2/9 log|x + 2| - 1/3 xx 1/((x - 1)) + "c"`

∴ I = `2/9 log|(x - 1)/(x + 2)| - 1/(3(x - 1)) + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.5: Integration - Q.5

संबंधित प्रश्न

Evaluate : `int x^2/((x^2+2)(2x^2+1))dx` 


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(1 - x^2)/(x(1-2x))`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


`int (dx)/(x(x^2 + 1))` equals:


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int 1/(sinx(3 + 2cosx))  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


`int 1/x^3 [log x^x]^2  "d"x` = p(log x)3 + c Then p = ______


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×