Advertisements
Advertisements
प्रश्न
`int x/((x - 1)^2 (x + 2)) "d"x`
उत्तर
Let I = `int x/((x - 1)^2 (x + 2)) "d"x`
Let `x/((x - 1)^2 (x + 2)) = "A"/(x - 1) + "B"/(x - 1)^2 + "C"/((x + 2))`
∴ x = A(x – 1)(x + 2) + B(x + 2) + C(x – 1)2 ......(i)
Putting x = 1 in (i), we get
1 = A(0)(3) + B(3) + C(0)2
∴ 1 = 3B
∴ B = `1/3`
Putting x = 2 in (i), we get
– 2 = A(– 3)(0) + B(0) + C(9)
∴ – 2 = 9C
∴ C = `-2/9`
Putting x = – 1 in (i), we get
– 1 = A(– 2)(1) + B(1) + C(4)
∴ – 1 = `-2"A" + 1/3 - 8/9`
∴ – 1 = `-2"A" - 5/9`
∴ 2A = `-5/9 + 1 = 4/9`
∴ A = `2/9`
∴ `x/((x - 1)^2(x + 2)) = (2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)`
∴ I = `int[(2/9)/(x - 1) + (1/3)/(x - 1)^2 + ((-2/9))/(x + 2)] "d"x`
= `2/9 int 1/(x - 1) "d"x + 1/3int(x - 1)^(-2) "d"x - 2/9 int 1/(x + 2) "d"x`
= `2/9 log|x - 1| + 1/3*((x - 1)^(-1))/(-1) - 2/9 log|x + 2| + "c"`
= `2/9 log|x - 1| - 2/9 log|x + 2| - 1/3 xx 1/((x - 1)) + "c"`
∴ I = `2/9 log|(x - 1)/(x + 2)| - 1/(3(x - 1)) + "c"`
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
`int (dx)/(x(x^2 + 1))` equals:
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate`int(5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`