Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/("x"("x"^5 + 1))` dx
उत्तर
Let I = `int 1/("x"("x"^5 + 1))` dx
∴ I = `int "x"^4/("x"^5("x"^5 + 1))` dx
Put x5 = t
∴ `5"x"^4 "dx" = "dt"`
∴ `"x"^4 "dx" = "dt"/5`
∴ I = `int 1/("t"("t + 1")) * "dt"/5`
Let `1/("t"("t + 1")) = "A"/"t" + "B"/"t + 1"`
∴ 1 = A(t + 1) + Bt ....(i)
Putting t = –1 in (i), we get
1 = A(0) + B(- 1)
∴ 1 = - B
∴ B = - 1
Putting t = 0 in (i), we get
1 = A(1) + B(0)
∴ A = 1
∴ `1/("t"("t + 1")) = 1/"t" + (- 1)/"t + 1"`
∴ I = `1/5 int (1/"t" + (-1)/"t + 1")` dt
`= 1/5 [int 1/"t" "dt" - int 1/("t + 1") "dt"]`
`= 1/5 [log |"t"| - log |"t" + 1|]` + c
`= 1/5 log |"t"/"t + 1"|` + c
∴ I = `1/5 log |"x"^5/("x"^5 + 1)|` + c
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
`int 1/(x^2 + 1)^2 dx` = ______.