Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
उत्तर
Let I = `int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Put x2 = t for the purpose of partial fraction.
We get `"t"/(("t" + "a"^2)("t" + "b"^2))`
Put `"t"/(("t" + "a"^2)("t" + "b"^2)) = "A"/("T" + "a"^2) + "B"/("t" + "b"^2)`
⇒ `"t"/(("t" + "a"^2)("t" + "b"^2)) = ("A"("t" + "b"^2) + "B"("t" + "a"^2))/(("t" + "a"^2)("t" + "b"^2))`
⇒ t = At + Ab2 + Bt + Ba2
Comparing the like terms, we get
A + B = 1 and Ab2 + Ba2 = 0
A = `(-"a"^2)/"b"^2 "B"`
∴ `(-"a"^2)/"b"^2 "B" + "B"` = 1
`"B"((-"a"^2)/"b"^2 + 1)` = 1
⇒ `"B"((-"a"^2 + "b"^2)/"b"^2)` = 1
⇒ B = `"b"^2/("b"^2 - "a"^2)` and A = `(-"a"^2)/"b"^2 xx "b"^2/("b"^2 - "a"^2) = "a"^2/("a"^2 - "b"^2)`
So A = `"a"^2/("a"^2 - "b"^2)` and B = `(-"b"^2)/("a"^2 - "b"^2)`
∴ `int x^2/((x^2 + "a"^2)(x^2 + "b"^2)) "d"x = "a"^2/("a"^2 - "b"^2) int 1/(x^2 + "a"^2) "d"x - "b"^2/("a"^2 - "b"^2) int 1/(x^2 + "b"^2) "d"x`
= `"a"^2/("a"^2 - "b"^2) xx 1/"a" tan^-1 x/"a" - "b"^2/("a"^2 - "b"^2) * 1/"b" tan^-1 x/"b"`
= `"a"/("a"^2 - "b"^2) tan^-1 x/"a" - "b"/("a"^2 - "b"^2) tan^-1 x-"b" + "C"`
Hence, I = `1/("a"^2 - "b"^2) ["a" tan^-1 x/"a" - "b" tan^-1 x/"b"] + "C"`.
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int xcos^3x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
`int 1/(x^2 + 1)^2 dx` = ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`