Advertisements
Advertisements
प्रश्न
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
उत्तर
Let I = `int "x"/(("x - 1")^2("x + 2"))` dx
Let `"x"/(("x - 1")^2("x + 2")) = "A"/"x - 1" + "B"/("x - 1")^2 + "C"/("x + 2")`
∴ x = A (x - 1) (x + 2) + B (x + 2) + C (x - 1)2 ....(i)
Putting x = 1 in (i), we get
1 = A (0) (3) + B (3) + C (0)2
∴ 1 = 3B
∴ B = `1/3`
Putting x = -2 in (i), we get
- 2 = A(- 3) (0) + B (0) + C (9)
∴ - 2 = 9C
∴ C = - `2/9`
Putting x = - 1 in (i), we get
- 1 = A(- 2) (1) + B (1) + C (4)
∴ - 1 = - 2A +`1/3 - 8/9 `
∴ - 1 = - 2A `- 5/9`
∴ 2A = `- 5/9 + 1 = 4/9`
∴ A = `2/9`
∴ `"x"/(("x - 1")^2("x + 2")) = (2/9)/"x - 1" + (1/3)/("x - 1")^2 + (- 2/9)/"x + 2"`
∴ I = `int [(2/9)/"x - 1" + (1/3)/("x - 1")^2 + (- 2/9)/"x + 2"]` dx
`= 2/9 int 1/"x - 1" "dx" + 1/3int ("x - 1")^-2 "dx" - 2/9 int 1/"x + 2" "dx"`
`= 2/9 log |"x - 1"| + 1/3 * ("x - 1")^-1/-1 - 2/9 log |"x + 2"|` + c
`= 2/9 log |"x - 1"| - 2/9 log |"x + 2"| - 1/3 xx 1/("x - 1") + "c"`
∴ I = `2/9 log |("x - 1")/("x + 2")| - 1/(3("x - 1"))` + c
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (sinx)/(sin3x) "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/(4x^2 - 20x + 17) "d"x`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`