Advertisements
Advertisements
प्रश्न
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
उत्तर
Let I = `int_-2^1 sqrt(5 - 4x - x^2)dx`
= `int_-2^1 sqrt(-(x^2 + 4x - 5))dx`
= `int_2^1 sqrt(-(x^2 + 4x + 2^2 - 2^2 - 5))dx`
= `int_-2^1 sqrt(-{(x + 2)^2 - 9})dx`
= `int_-2^1 sqrt(3^2 - (x + 2)^2)dx`
= `[(x + 2)/2 sqrt(3^2 - (x + 2)^2) + 3^2/2 sin^-1 ((x + 2)/3)]_-2^1`
= `0 + 9/2 . π/2 - (0 + 0)`
= `(9π)/4`
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`1/(e^x -1)`[Hint: Put ex = t]
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int x sin2x cos5x "d"x`
`int xcos^3x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.