Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`1/(x^2 - 9)`
उत्तर
Let `1/(x^2 - 9) = 1/((x - 3)(x + 3))`
`= A/(x - 3) + B/(x + 3)`
⇒ 1 ≡ A(x + 3) + B(x - 3)
Put x = 3
1 = A (3 + 3)
⇒ A `= 1/6`
again, put x = -3
1 = B(3 - 3)
⇒ B `= -1/6`
`therefore 1/(x^2 - 9) = 1/6 [1/(x - 3) - 1/(x + 3)]`
`=> int 1/(x^2 - 9) = 1/6 int (1/(x - 3) - 1/(x + 3))` dx
`= 1/6 [log abs (x - 3) - log abs (x + 3)] + C`
`= 1/6 log abs ((x - 3)/(x + 3)) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int ("d"x)/(x^3 - 1)`
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x^2"e"^(4x) "d"x`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
`int 1/(x^2 + 1)^2 dx` = ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`