Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
उत्तर
Since `(1-x^2)/(x (1 - 2x)) = (1 - x^2)/(x - 2x^2)` is an improper fraction, therefore we convert it into a peoper fraction by long division method, we get
`(x^2 - 1)/(2x^2 - x) = 1/2 + (x/2 - 1)/(2x^2 - x)`
`= int (-1 + x^2)/(-x + 2x^2) dx`
`= 1/2 int dx 1/2 int (x-2)/(2x^2 - x) dx`
Now, `(x - 2)/(2x^2 - x) = (x - 2)/(x (2x - 1))`
`= A/x + B/(2x - 1)`
⇒ x - 2 = A (2x - 1) + Bx ......(i)
Putting x = 0 in (i), we get
-2 = A (-1)
⇒ A = 2
Putting `x = 1/2` in (i), we get
`1/2 -2= B (1/2)`
⇒ 1 - 4 = B
⇒ B = -3
∴ `(x - 2)/ (2x^2 - x) = 2/x - 3/ (2x - 1) = 2/x + 3/ (1 - 2x)`
We have,
`int (1 - x^2)/(x (1 - 2x)) dx`
`= 1/2 int 1 dx + 1/2 int (2/x + 3 /(1 - 2x)) dx`
`= 1/2x + log |x| -3/4 log |1 - 2x| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`1/(x^4 - 1)`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(x(x^3 - 1)) "d"x`
`int sin(logx) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`