English

Integrate the rational function: 1-x2x(1-2x) - Mathematics

Advertisements
Advertisements

Question

Integrate the rational function:

`(1 - x^2)/(x(1-2x))`

Sum

Solution

Since `(1-x^2)/(x (1 - 2x)) = (1 - x^2)/(x - 2x^2)` is an improper fraction, therefore we convert it into a peoper fraction by long division method, we get

`(x^2 - 1)/(2x^2 - x) = 1/2 + (x/2 - 1)/(2x^2 - x)`

`= int (-1 + x^2)/(-x + 2x^2) dx`

`= 1/2 int dx 1/2 int (x-2)/(2x^2 - x) dx`

Now, `(x - 2)/(2x^2 - x) = (x - 2)/(x (2x - 1))`

`= A/x + B/(2x - 1)`

⇒ x - 2 = A (2x - 1) + Bx                     ......(i)

Putting x = 0 in (i), we get

-2 = A (-1)

⇒ A = 2

Putting `x = 1/2` in (i), we get

`1/2 -2= B (1/2)`

⇒ 1 - 4 = B

⇒ B = -3

∴ `(x - 2)/ (2x^2 - x) = 2/x - 3/ (2x - 1) = 2/x + 3/ (1 - 2x)`

We have,

`int (1 - x^2)/(x (1 - 2x)) dx`

`= 1/2 int 1 dx + 1/2 int (2/x + 3 /(1 - 2x)) dx`

`= 1/2x + log |x| -3/4 log |1 - 2x| + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 322]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 6 | Page 322

RELATED QUESTIONS

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


`int "dx"/(("x" - 8)("x" + 7))`=


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int (sinx)/(sin3x)  "d"x`


`int ("d"x)/(x^3 - 1)`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int xcos^3x  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


Evaluate `int x log x  "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×