Advertisements
Advertisements
Question
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Solution
Let I = `int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Let 3e2t + 5 = `"A"(4"e"^(2"t") - 5) + "B" "d"/"dt"(4"e"^(2"t") - 5)`
= 4Ae2t – 5A + B(8e2t)
∴ 3e2t + 5 = (4A + 8B) e2t – 5A
Comparing the coefficients of e2t and constant term on both sides,
we get 4A + 8B = 3 and – 5A = 5
Solving these equations,
we get A = – 1 and B = `7/8`
∴ I = `int (-1(4"e"^(2"t") - 5) + 7/8(8"e"^(2"t")))/(4"e"^(2"t") - 5) "dt"`
= `/int "dt" + 7/8 int (8"e"^(2"t"))/(4"e"^(2"t") - 5) "dt"`
∴ I = `-"t" + 7/8 log|4"e"^(2"t") - 5| + "c"` ......`[because int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^7/(1 + x^4)^2 "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate: `int (dx)/(2 + cos x - sin x)`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)