Advertisements
Advertisements
Question
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Solution
f'(x) = 4x3 − 3x2 + 2x + k ....[Given]
f(x) = ∫ f'(x) dx
= ∫ (4x3 − 3x2 + 2x + k) dx
= 4 ∫ x3 dx − 3 ∫ x2 dx + 2 ∫ x dx + k ∫ dx
= `4 ("x"^4/4) - 3("x"^3/3) + 2("x"^2/2) "kx" + "c"`
∴ f(x) = x4 − x3 + x2 + kx + c ....(i)
Now, f(0) = 1 ...[Given]
∴ (0)4 − (0)3 + (0)2 + k(0) + c = 1
∴ c = 1 ....(ii)
Also, f(1) = 4 ....[Given]
∴ 1 − 1 + 1 + k + c = 4
∴ 1 + k + 1 = 4
∴ 2 + k = 4
∴ k = 2 ...(iii)
Substituting (ii) and (iii) in (i), we get
f(x) = x4 − x3 + x2 + 2x + 1
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int (sin4x)/(cos 2x) "d"x`
`int x/(x + 2) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
`int x^3 e^(x^2) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`