Advertisements
Advertisements
Question
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Solution
\[\text{ Let I }= \int\frac{dx}{1 + e^x}\]
\[\text{ Dividing numerator and denominator by e}^x \]
\[ \Rightarrow I = \int\frac{\frac{1}{e^x}\text{ dx}}{\frac{1}{e^x} + 1}\]
\[ = \int\frac{e^{- x}\text{ dx}}{e^{- x} + 1}\]
\[\text{ Let e}^{- x} + 1 = t\]
\[ - e^{- x} dx = dt\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int - \frac{dt}{t}\]
\[ = - \text{ log }\left| t \right| + C\]
\[ = - \text{ log }\left| 1 + e^x \right| + C \left( \because t = 1 + e^x \right)\]
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/(xsin^2(logx)) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`