English

Write a Value of ∫ 1 1 + E X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]

Sum

Solution

\[\text{  Let I }= \int\frac{dx}{1 + e^x}\]
\[\text{ Dividing  numerator  and  denominator by e}^x \]
\[ \Rightarrow I = \int\frac{\frac{1}{e^x}\text{ dx}}{\frac{1}{e^x} + 1}\]
\[ = \int\frac{e^{- x}\text{  dx}}{e^{- x} + 1}\]
\[\text{ Let e}^{- x} + 1 = t\]
\[ - e^{- x} dx = dt\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int - \frac{dt}{t}\]
\[ = - \text{ log }\left| t \right| + C\]
\[ = - \text{ log }\left| 1 + e^x \right| + C \left( \because t = 1 + e^x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 179]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 15 | Page 179

RELATED QUESTIONS

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


`int 1/(xsin^2(logx))  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×