Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
उत्तर
\[\text{ Let I }= \int\frac{dx}{1 + e^x}\]
\[\text{ Dividing numerator and denominator by e}^x \]
\[ \Rightarrow I = \int\frac{\frac{1}{e^x}\text{ dx}}{\frac{1}{e^x} + 1}\]
\[ = \int\frac{e^{- x}\text{ dx}}{e^{- x} + 1}\]
\[\text{ Let e}^{- x} + 1 = t\]
\[ - e^{- x} dx = dt\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int - \frac{dt}{t}\]
\[ = - \text{ log }\left| t \right| + C\]
\[ = - \text{ log }\left| 1 + e^x \right| + C \left( \because t = 1 + e^x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
`int sqrt(1 + "x"^2) "dx"` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: ∫ |x| dx if x < 0
`int x^2/sqrt(1 - x^6)` dx = ________________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int sin^-1 x`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int1/(x(x-1))dx`