Advertisements
Advertisements
प्रश्न
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
उत्तर
f '(x) = `sqrt"x"` ....[Given]
f(x) = ∫ f '(x)
`= int sqrt"x"` dx
`= int "x"^(1/2)` dx
`= "x"^(3/2)/(3/2)` + c
∴ f(x) = `2/3 "x"^(3/2) + "c"` ...(i)
Now, f(1) = 2 ....[Given]
∴ `2/3 (1)^(3/2) + "c" = 2`
∴ c = `2 - 2/3`
∴ c = `4/3`
∴ f(x) = `2/3 "x"^(3/2) + 4/3`
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
`int 1/(xsin^2(logx)) "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int dx/(1 + e^-x)` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int cos^3x dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5)dx`