मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫tanxsinxcosxdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`

बेरीज

उत्तर १

`I = int sqrt(tanx)/[sinx.cosx]` dx

Dividing numerator and denominator by cosx.

= `int [sqrt(tanx)/cosx]/[(sinxcosx)/(cosx)]` dx

= `int [sqrt(tan x)(1/cosx)]/[(sinx/cosx).cosx]` dx

= `int [sqrt(tan x)]/[sinx/cosx](1/cos^2x)` dx

= `int [sqrt(tan x)]/[tan x](1/cos^2x)` dx

= `int [sqrt(tan x)]/[tan x](sec^2x)` dx

Put, tan x = t
       Sec2x dx = dt

= `int 1/sqrtt dt`

= 2`tan^(1/2) + c`

= 2`sqrttanx` + c    

shaalaa.com

उत्तर २

Given,
`I = int sqrt(tanx)/[sinx.cosx]` dx
 
simplifying the function
 
`= int sqrt(tanx)/[sinx.cosx. (cosx)/(cosx)]` dx
 
`= int sqrt(tanx)/[sinx.(cos^2x)/(cosx)` dx
 
`= int sqrt(tanx)/[cos^2x. (sinx)/(cosx)]` dx
 
`= int sqrt(tanx)/[cos^2x. tanx]` dx
 
`= int [sqrt(tanx).(tan x)^(-1)]/[cos^2x]` dx
 
`= int [(tanx)^(1/2 -1)]/[cos^2x]` dx
 
`= int [(tanx)^(-1/2)]/[cos^2x]` dx
 
`= int (tanx)^(-1/2). 1/[cos^2x]` dx
 
`= int (tanx)^(-1/2). sec^2x` dx
 
Let tan x = t
So, sec2x = `(dt)/(dx)`
 
⇒ dx = `(dt)/(sec^2x)`
 
∴ `int (tanx)^(−1/2).sec^2x` dx
 
= `int(t)^(−1/2).sec^2x. (dt)/(sec^2x)`​
 
= `int(t)^(−1/2)` dt
 
= `(t^(-1/2) + 1)/(-1/2 + 1) + C   ...{as int x^n dx = (x^(n + 1))/(n + 1) + C}`
 
= `t^(1/2)/(1/2) + C`
 
= `2t^(1/2) + C`   
 
= `2sqrt(t) + C`
 
Substituting t = tan x
 
= `2sqrt(tanx) + C`
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (July)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int cos^2x.dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following

`int1/(x^2 +4x-5)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×