Advertisements
Advertisements
प्रश्न
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
उत्तर
\[\text{ Let I }= \int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)dx\]
\[\text{ As we know that }\int e^{x} \left\{ f\left( x \right) + f'\left( x \right) \right\}dx = e^x f\left( x \right) + C\]
\[ \therefore I = \frac{e^x}{x} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: ∫ |x| dx if x < 0
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int x^3"e"^(x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int sec^6 x tan x "d"x` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int sqrt(x^2 - a^2)/x dx` = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`