Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
उत्तर
Let `I = int (e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))` dx
Put e2x + e-2x = t
2e2x - 2e-2x dx = dt
⇒ 2(e2x - e-2x) dx = `dt/2`
Hence, `I = 1/2 int 1/t` dt
`= 1/2 log t + C`
`= 1/2 log (e^(2x) + e^(-2x)) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int 1/((2"x" + 3))` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int 1/(cos x - sin x)` dx = _______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int logx/x "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (logx)^2/x dx` = ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`