मराठी

Write a Value of ∫ E a X Sin B X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of\[\int e^{ax} \sin\ bx\ dx\]

बेरीज

उत्तर

\[\text{ Let I }= \int e^{ax} . \sin bx\ dx\]
\[ = \sin bx\int e^{ax}\text{  dx }- \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax} dx \right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int\cos bx \times b . \frac{e^{ax}}{a}\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a}\int e^{ax} . \cos bx\ dx \]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \cos bxdx\]
\[ = \cos bx\int e^{ax} dx - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \int  b . \sin bx \times \frac{e^{ax}}{a}dx\]
\[ = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and}\ \left( 2 \right)\]
\[ \therefore I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a} \left\{ \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a^2} \cos bx \text{ e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \sin bx . \frac{e^{ax}}{a} - \frac{b \cos bx \text{ e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \sin bx - b\cos bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \sin bx - b\cos bx \right) e^{ax}}{a^2 + b^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 31 | पृष्ठ १९७

संबंधित प्रश्‍न

Evaluate :`intxlogxdx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×