हिंदी

Write a Value of ∫ E a X Sin B X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of\[\int e^{ax} \sin\ bx\ dx\]

योग

उत्तर

\[\text{ Let I }= \int e^{ax} . \sin bx\ dx\]
\[ = \sin bx\int e^{ax}\text{  dx }- \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax} dx \right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int\cos bx \times b . \frac{e^{ax}}{a}\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a}\int e^{ax} . \cos bx\ dx \]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \cos bxdx\]
\[ = \cos bx\int e^{ax} dx - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \int  b . \sin bx \times \frac{e^{ax}}{a}dx\]
\[ = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and}\ \left( 2 \right)\]
\[ \therefore I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a} \left\{ \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a^2} \cos bx \text{ e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \sin bx . \frac{e^{ax}}{a} - \frac{b \cos bx \text{ e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \sin bx - b\cos bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \sin bx - b\cos bx \right) e^{ax}}{a^2 + b^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Very Short Answers | Q 31 | पृष्ठ १९७

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


`int cos sqrtx` dx = _____________


If f'(x) = `x + 1/x`, then f(x) is ______.


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×