Advertisements
Advertisements
प्रश्न
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
उत्तर
\[\text{ Let I }= \int e^{ax} . \sin bx\ dx\]
\[ = \sin bx\int e^{ax}\text{ dx }- \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax} dx \right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int\cos bx \times b . \frac{e^{ax}}{a}\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a}\int e^{ax} . \cos bx\ dx \]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \cos bxdx\]
\[ = \cos bx\int e^{ax} dx - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \int b . \sin bx \times \frac{e^{ax}}{a}dx\]
\[ = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and}\ \left( 2 \right)\]
\[ \therefore I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a} \left\{ \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a^2} \cos bx \text{ e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \sin bx . \frac{e^{ax}}{a} - \frac{b \cos bx \text{ e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \sin bx - b\cos bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \sin bx - b\cos bx \right) e^{ax}}{a^2 + b^2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
`int cos sqrtx` dx = _____________
If f'(x) = `x + 1/x`, then f(x) is ______.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).