Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
उत्तर
Let I = `int (3x + 1)/sqrt(-2x^2 + x + 3).dx`
Let 3x + 1 = `"A"[d/dx(-2x^2 + x + 3)] + "B"`
= A(2 – 2x) + B
∴ 3x + 1 = 2Ax + (2A + B)
Comparing the coefficient of x and constant on both the sides, we get
– 2A = 7 and 2A + B = 3
∴ A = `(-7)/(2) and 2(-7/2) + "B" ` = 3
∴ B = 10
∴ 7x + 3 = `(-7)/(2)(2 - 2x) + 10`
∴ I = `int ((-7)/(2)(2 - 2x) + 10)/sqrt(3 + 2x - x^2).dx`
= `(-7)/(2) int ((2 - 2x))/sqrt(3 + 2x - x^2).dx + 10 int(1)/sqrt(3 + 2x - x^2)x`
= `(-7)/(2)"I"_1 + 10"I"_2`
In I1, put 3 + 2x – x2 = t
∴ (2 – 2x)dx = dt
∴ I1 = `int (1)/sqrt(t)dt`
= `int t^(-1/2) dt`
= `t^(1/2)/(1/2) + c_1`
= `2sqrt(3 + 2x - x^2) + c_1`
I2 = `int (1)/sqrt(3 - (x^2 - 2x + 1) + 1).dx`
= `int (1)/sqrt((2)^2 - (x - 1)^2).dx`
= `sin^-1((x - 1)/2) + c_2`
`-(3)/(2) sqrt(-2x^2 + x + 3) + (7)/(4sqrt(2)) sin^-1((4x - 1)/5) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Solve: dy/dx = cos(x + y)
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int sqrt(1 + "x"^2) "dx"` =
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int cos sqrtx` dx = _____________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int (cos x)/(1 - sin x) "dx" =` ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Write `int cotx dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`