Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
उत्तर
Let `I = int (x^3 - 1)^(1/3) .x^5 dx`
On multiplying the numerator and denominator by 3
`I = 1/3 int (x^3 - 1)^(1/3).3x^2 . x^3` dx
Put x3 - 1 = t
3x2 dx = dt
Also, x3 = t + 1
∴ `I = 1/3 int t^(1/3) (t + 1) dt`
`= 1/3 [3/7 t ^(7/3) + 3/4 t^(4/3)] + C = 1/7 t^(7/3) + 1/4 t^(4/3) C`
`= 1/7 (x^3 - 1)^(7/3) + 1/4 (x^3 - 1)^(4/3) + C`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/(xsin^2(logx)) "d"x`
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).