हिंदी

Write a Value of ∫ Sec 2 X ( 5 + Tan X ) 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]

योग

उत्तर

\[\text{ Let I }= \int\frac{\sec^2 x dx}{\left( 5 + \tan x \right)^4}\]
\[\text{ Let 5 + tan  x = t }\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int\frac{dt}{t^4}\]
\[ = \int t^{- 4} dt\]
\[ = \left[ \frac{t^{- 4 + 1}}{- 4 + 1} \right] + C\]
\[ = - \frac{1}{3 t^3} + C\]
\[ = - \frac{1}{3 \left( 5t + \tan x \right)^3} + C \left( \because t = 5 + \tan x \right)\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Very Short Answers | Q 18 | पृष्ठ १९७

संबंधित प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`cos sqrt(x)/sqrtx`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: ∫ |x| dx if x < 0


`int x/(x + 2)  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×