Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/("x" log "x")`dx
उत्तर
Let I = `int 1/("x" log "x")`dx
Put log x = t
∴ `1/"x" "dx" = "dt'`
∴ I = `int 1/"t"` dt = log |t| + c
∴ I = log |log x| + c
Alternate Method:
Let I = `int 1/("x" * log "x")`dx
`= int (1//"x" "dx")/(log "x")`
∴ I = log |log x| + c .....`[because int ("f" '("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`1/(1 + cot x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int "e"^sqrt"x"` dx
`int (cos2x)/(sin^2x) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (logx)^2/x dx` = ______.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`