Advertisements
Advertisements
प्रश्न
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
उत्तर
Let I = ∫ (x + 1)(x + 2)7 (x + 3)dx
Put x + 2 = t
∴ dx = dt
Also, x = t - 2
∴ x + 1 = t - 2 + 1
= t - 1
and x + 3 = t - 2 + 3
= t + 1
∴ I = `int ("t" - 1) * "t"^7 ("t" + 1) * "dt"`
`= int ("t"^2 - 1) * "t"^7 * "dt"`
`= int ("t"^9 - "t"^7) "dt"`
`= int "t"^9 "dt" - int "t"^7 "dt"`
`= "t"^10/10 - "t"^8/8 + "c"`
∴ I = `("x + 2")^10/10 - ("x + 2")^8/8` + c
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int x^3"e"^(x^2) "d"x`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (logx)^2/x dx` = ______.
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx