Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
उत्तर
Let I = `int (1 + "x")/("x" + "e"^"-x")` dx
`= int (1 + "x")/("x" + 1/"e"^"x")` dx
`= int (1 + "x")/(("x" * "e"^"x" + 1)/"e"^"x")`dx
`= int ("e"^"x"(1 + "x"))/("x" * "e"^"x" + 1)` dx
Put `"x" * "e"^"x" + 1 = "t"`
∴ `["x" * ("e"^"x") + "e"^"x" (1) + 0]`dx = dt
∴ `"e"^"x" ("x" + 1)`dx = dt
∴ I = `int "dt"/"t"`
= log |t| + c
∴ I = log `|"x" * "e"^"x" + 1|` + c
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (1 + x)/(x + "e"^(-x)) "d"x`
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1))dx`