Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
उत्तर
Let I = `int ("e"^"x" + "e"^(- "x"))^2 * ("e"^"x" - "e"^(-"x"))`dx
Put `"e"^"x" + "e"^(- "x")` = t
∴ `"e"^"x" - "e"^(- "x")`dx = dt
∴ I = `int "t"^2 . "dt"`
∴ I = `(t^(2 + 1))/(2 + 1) + c`
∴ I = `(t^3)/(3) + c`
∴ I = `[("e"^"x" + "e"^(- "x"))^3]/(3) + c`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Write a value of\[\int \log_e x\ dx\].
Write a value of
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : sin5x.cos8x
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int dx/(1 + e^-x)` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`