Advertisements
Advertisements
प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
उत्तर
`I=∫(x+2)/sqrt(x^2+5x+6)dx `
Multiplying and dividing by 2, we get
`I=1/2∫(2x+4)/sqrt(x^2+5x+6)dx `
Adding and subtracting 1 to the numerator, we get:
`I=1/2∫(2x+4+1-1)/sqrt(x^2+5x+6)dx`
` I=1/2∫(2x+5)/sqrt(x2+5x+6)dx -1/2∫1/sqrt(x^2+5x+6)dx`
`"Let" I_1=1/2∫(2x+5)/sqrt(x^2+5x+6)dx `
Put x2+5x+6=t
Differentiating with respect to x, we get:
(2x+5)dx=dt
`I_1=intdt/sqrtt`
`I_1=2sqrtt+c`
`I_1=2sqrt(x^2+5x+6)+c`
`1/2 int "dt"/sqrt t =∫1/sqrt(x^2+5x+(5/2)^2-(5/2)^2+6)dx`
`1/2 int "dt"/sqrt t - 1/2 int "dx"/sqrt(x^2+5x+6 + (5/2)^2 - 25/4)dx`
`1/2 "t"^(1/2)/(1/2) int 1/sqrt((x+5/2)^2-(1/2)^2)dx`
`= 1/2 xx 2 xx "t"^(1/2) - 1/2 |"log" x + 5/2 + sqrt (x^2 + 5x + 6)| + "C"`
`= sqrt (x^2 + 5x + 6) - 1/2 "log" |sqrt (x^2 + 5x + 6)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Write a value of
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int 1/((2"x" + 3))` dx
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int1/(4 + 3cos^2x)dx` = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int secx/(secx - tanx)dx` equals ______.
Evaluate:
`int sqrt((a - x)/x) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`