हिंदी

Evaluate : ∫(x+2)/√(x2+5x+6)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`

योग

उत्तर

`I=∫(x+2)/sqrt(x^2+5x+6)dx `

Multiplying and dividing by 2, we get

`I=1/2∫(2x+4)/sqrt(x^2+5x+6)dx `

Adding and subtracting 1 to the numerator, we get:

`I=1/2∫(2x+4+1-1)/sqrt(x^2+5x+6)dx`

` I=1/2∫(2x+5)/sqrt(x2+5x+6)dx -1/2∫1/sqrt(x^2+5x+6)dx`

`"Let" I_1=1/2∫(2x+5)/sqrt(x^2+5x+6)dx `

Put x2+5x+6=t

Differentiating with respect to x, we get:

(2x+5)dx=dt

`I_1=intdt/sqrtt`


`I_1=2sqrtt+c`


`I_1=2sqrt(x^2+5x+6)+c`


`1/2 int "dt"/sqrt t =∫1/sqrt(x^2+5x+(5/2)^2-(5/2)^2+6)dx`


`1/2 int "dt"/sqrt t - 1/2 int "dx"/sqrt(x^2+5x+6 + (5/2)^2 - 25/4)dx`


`1/2 "t"^(1/2)/(1/2) int 1/sqrt((x+5/2)^2-(1/2)^2)dx`


`= 1/2 xx 2 xx "t"^(1/2) - 1/2 |"log" x + 5/2 + sqrt (x^2 + 5x + 6)| + "C"`


`= sqrt (x^2 + 5x + 6) - 1/2 "log" |sqrt (x^2 + 5x + 6)| + "C"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) All India Set 1

संबंधित प्रश्न

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int 1/((2"x" + 3))` dx


`int 1/(xsin^2(logx))  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int1/(4 + 3cos^2x)dx` = ______ 


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int secx/(secx - tanx)dx` equals ______.


Evaluate:

`int sqrt((a - x)/x) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×