Advertisements
Advertisements
प्रश्न
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
उत्तर
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is 1 + log x = t.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Write a value of\[\int \log_e x\ dx\].
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (cos2x)/(sin^2x) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.