Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
उत्तर
Let I = `int (1)/(x(x^3 - 1)).dx`
= `int (x^-4)/(x^-4x(x^3 - 1)).dx`
= `int (x^-4)/(1 - x^-3).dx`
= `(1)/(3) int (3x^-4)/(1 - x^-3).dx`
= `(1)/(3) int (d/dx(1 - x^-3))/(1 - x^-3).dx`
= `(1)/(3)log|1 - x^-3 | + c ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`
= `(1)/(3)log|1 - 1/x^3| + c`
= `(1)/(3)log|(x^3 - 1)/x^3| + c`.
Alternative Method :
Let I = `int (1)/(x(x^3 - 1)).dx`
= `int x^2/(x^3(x^3 - 1)).dx`
Put x3 = t
∴ 3x2dx = dt
∴ x2dx = `dt/(3)`
∴ I = `int (1)/(t(t - 1)).dt/(3)`
= `(1)/(3)int(1)/(t(t - 1))dt`
= `(1)/(3) int(t - (t - 1))/(t(t - 1))dt`
= `(1)/(3) int(1/(t - 1) - 1/t)dt`
= `(1)/(3)[int (1)/(t - 1)dt - int (1)/tdt]`
= `(1)/(3)[log |t - 1| - log|t|] + c`
= `(1)/(3)log|(t - 1)/t| + c`
= `(1)/(3)log|(x^3 - 1)/x^3| + c`.
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int "e"^sqrt"x"` dx
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
`int x^3 e^(x^2) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`