हिंदी

Integrate the following functions w.r.t. x : 1x(x3-1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`

योग

उत्तर

Let I = `int (1)/(x(x^3 - 1)).dx`

= `int (x^-4)/(x^-4x(x^3 - 1)).dx`

= `int (x^-4)/(1 - x^-3).dx` 

= `(1)/(3) int (3x^-4)/(1 - x^-3).dx`

= `(1)/(3) int (d/dx(1 - x^-3))/(1 - x^-3).dx`

= `(1)/(3)log|1 - x^-3 | + c       ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

= `(1)/(3)log|1 - 1/x^3|  + c`

= `(1)/(3)log|(x^3 - 1)/x^3| + c`.

Alternative Method :

Let I = `int (1)/(x(x^3 - 1)).dx`

= `int x^2/(x^3(x^3 - 1)).dx`

Put x3 = t
∴ 3x2dx = dt

∴ x2dx = `dt/(3)`

∴ I = `int (1)/(t(t -  1)).dt/(3)`

= `(1)/(3)int(1)/(t(t - 1))dt`

= `(1)/(3) int(t - (t - 1))/(t(t - 1))dt` 

= `(1)/(3) int(1/(t - 1) - 1/t)dt`

= `(1)/(3)[int (1)/(t - 1)dt - int (1)/tdt]`

= `(1)/(3)[log |t - 1| - log|t|] + c`

= `(1)/(3)log|(t - 1)/t| + c`

= `(1)/(3)log|(x^3 - 1)/x^3| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.24 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int "e"^sqrt"x"` dx


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


`int x^3 e^(x^2) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×