Advertisements
Advertisements
प्रश्न
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
उत्तर
f'(x) = x2 + 5 ...(Given)
∴ f(x) = ∫f'(x) dx
∴ f(x) = ∫(x2 + 5) dx
∴ f(x) = ∫ x2 dx + 5 ∫ dx
∴ f(x) = `"x"^3/3 + 5"x" + "c"` ....(i)
Substitute x = 0, f(0) = −1 ...(Given)
∴ f(x) = `"x"^3/3 + 5"x" + "c"`
∴ f(0) = `0^3/3 + 5(0) + "c"`
∴ −1 = 0 + 0 + c
∴ c = −1
Substituting c = – 1 in (i), we get,
∴ f(x) = `"x"^3/3 + 5"x" + (− 1)`
∴ f(x) = `"x"^3/3 + 5"x" − 1`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(1 + cot x)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sin^2(x/2)dx`