Advertisements
Advertisements
प्रश्न
If f'(x) = `x + 1/x`, then f(x) is ______.
विकल्प
`x^2 + log |x| + C`
`x^2/2 + log |x| + C`
`x/2 + log |x| + C`
`x/2 - log |x| + C`
उत्तर
If f'(x) = `x + 1/x`, then f(x) is `underline(bb(x^2/2 + log |x| + C))`.
Explanation:
`x^2/2 + log |x| + C` .....`(∵ f(x) = int(x + 1/x)dx)`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int cot^2x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`