हिंदी

Integrate the following functions w.r.t. x : ∫1cosx-sinx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`

योग

उत्तर

Let I = `int (1)/(cosx - sinx).dx`

Dividing each term by `sqrt(1^2 + (-1)^2) = sqrt(2)`, we get

I = `(1)/sqrt(2) int (1)/(cosx. 1/sqrt(2) - sinx. 1/sqrt(2)).dx`

= `1/sqrt(2) int (1)/(cosx  . cos  pi/(4) - sin x. sin  pi/(4)).dx`

= `1/sqrt(2) int (1)/(cos(x + pi/4)).dx`

= `1/sqrt(2) int sec(x + pi/4).dx`

= `1/sqrt(2)log|sec(x + pi/4) + tan(x + pi/4)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.8 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int "x" * "e"^"2x"` dx


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int cot^2x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int(1 + x + x^2/(2!))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×