Advertisements
Advertisements
प्रश्न
Integrate the functions:
tan2(2x – 3)
उत्तर
Let `I = int tan^2 (2x - 3) dx`
`= int [sec^2 (2x - 3) - 1]dx`
`= int sec^2 (2x - 3)dx - int 1 dx`
`= sec^2 (2x - 3) dx - x + C_1`
I = I1 - x + C1
Where, `I_1 = int sec^2 (2x - 3) dx.`
Put 2x - 3 = t
⇒ 2dx = dt
⇒ `I_1 = 1/2 int sec^2 t dt`
⇒ `I_1 = 1/2 tan t + C_2`
`= 1/2 tan (2x - 3) + C_2`
`I = I_1 - x + C_1`
= `1/2 tan (2x - 3) - x + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int log ("x"^2 + "x")` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`