हिंदी

Integrate the functions: tan2(2x – 3) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the functions:

tan2(2x – 3)

योग

उत्तर

Let `I = int tan^2 (2x - 3) dx`

`= int [sec^2 (2x - 3) - 1]dx`

`= int sec^2 (2x - 3)dx - int 1 dx`

`= sec^2 (2x - 3) dx - x + C_1`

I = I1 - x + C1

Where, `I_1 = int sec^2 (2x - 3) dx.`

Put 2x - 3 = t

⇒ 2dx = dt

⇒ `I_1 = 1/2 int sec^2 t  dt`

⇒ `I_1 = 1/2 tan t + C_2`

`= 1/2 tan (2x - 3) + C_2`

`I = I_1 - x + C_1`

= `1/2 tan (2x - 3) - x + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.2 [पृष्ठ ३०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.2 | Q 21 | पृष्ठ ३०५

संबंधित प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: `int log ("x"^2 + "x")` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×