Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
उत्तर
\[\text{ Let I} = \int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2}dx\]
\[\text{ Let tan}^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[ \therefore I = \int t^3 . dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \tan^{- 1} x \right)^4}{4} + C \left( \because t = \tan^{- 1} x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Write `int cotx dx`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int(1 + x + x^2/(2!))dx`
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`